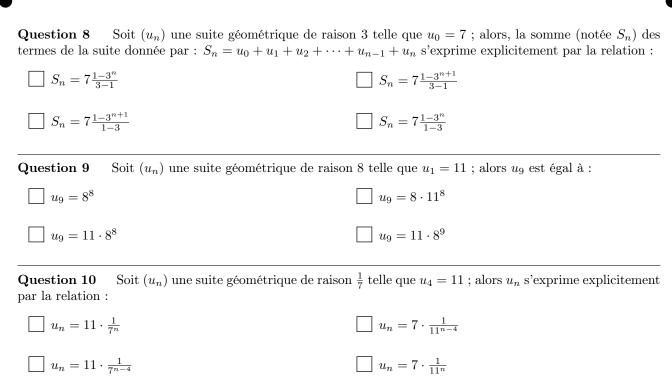
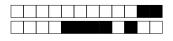
AUBIN Mathis

| <b>Question 1</b> La suite $(u_n)$ définie pour tout entie la raison / géométrique en précisant la raison / ni arithmétique | er $n$ par $u_n = -16 \cdot 4^n$ est une suite (arithmétique en précisant que, ni géométrique) :                                               |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| géométrique de raison -16                                                                                                   | arithmétique de raison -16                                                                                                                     |
| ni arithmétique, ni géométrique                                                                                             | géométrique de raison 4                                                                                                                        |
| Question 2 La suite $(u_n)$ définie pour tout entier la raison / géométrique en précisant la raison / ni arithmétique       | r $n$ par $u_n=14\cdot n+11$ est une suite (arithmétique en précisant que, ni géométrique) :                                                   |
| arithmétique de raison 14                                                                                                   | ni arithmétique, ni géométrique                                                                                                                |
| géométrique de raison 14                                                                                                    | arithmétique de raison 11                                                                                                                      |
|                                                                                                                             | raison 9 telle que $u_0 = 12$ ; alors, la somme (notée $S_n$ ) des $\cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation:           |
| $S_n = 12 \frac{1-9^n}{9-1}$                                                                                                |                                                                                                                                                |
|                                                                                                                             | $  S_n = 12 \frac{1-9^n}{1-9} $                                                                                                                |
|                                                                                                                             | tier $n$ la relation de récurrence suivante : $u_{n+1} = 3 \cdot u_n + -13$ trique en précisant la raison / ni arithmétique, ni géométrique) : |
| ni arithmétique, ni géométrique                                                                                             | géométrique de raison 3                                                                                                                        |
| géométrique de raison -13                                                                                                   | arithmétique de raison -13                                                                                                                     |
| Question 5 Soit $(u_n)$ une suite géométrique de                                                                            | raison 10 telle que $u_4 = 11$ ; alors $u_{13}$ est égal à :                                                                                   |
| $u_{13} = 11 \cdot 10^9$                                                                                                    | $    u_{13} = 10 \cdot 11^9 $                                                                                                                  |
|                                                                                                                             | $u_{13} = 10^9$                                                                                                                                |
|                                                                                                                             | raison 3 telle que $u_0 = 7$ ; alors, la somme (notée $S_n$ ) des $\cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation :           |
| $  S_n = (n+1)\frac{14+3\cdot n}{2} $                                                                                       | $  S_n = (n+1)\frac{7+3\cdot n}{2} $                                                                                                           |
|                                                                                                                             | $  S_n = n \frac{14 + 3 \cdot n}{2} $                                                                                                          |
| Question 7 Soit $(u_n)$ une suite arithmétique de par la relation :                                                         | raison 8 telle que $u_4 = 13$ ; alors $u_n$ s'exprime explicitement                                                                            |
| $  u_n = 8 \cdot n - 13 $                                                                                                   | $  u_n = 8 \cdot n + 13 $                                                                                                                      |
| $  u_n = 13 \cdot n + 8 $                                                                                                   | $  u_n = 8 \cdot n - 19 $                                                                                                                      |

| Question 8<br>par la relation                                                                                                                                                                                                                            |                             | $\frac{1}{7}$ telle que $u_5=10$ ; alors $u_n$ s'exprime explicitement |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                          | $\frac{1}{7^n}$             | $  u_n = 7 \cdot \frac{1}{10^{n-5}} $                                  |
|                                                                                                                                                                                                                                                          | $\frac{1}{7^{n-5}}$         | $  u_n = 7 \cdot \frac{1}{10^n} $                                      |
| Question 9 Une suite $(u_n)$ vérifiant pour tout entier $n$ la relation de récurrence suivante : $u_{n+1} = \frac{1}{2}u_n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : |                             |                                                                        |
| géométric                                                                                                                                                                                                                                                | que de raison $\frac{1}{2}$ | $\hfill \square$ arithmétique de raison $\frac{1}{2}$                  |
| géométric                                                                                                                                                                                                                                                | que de raison 2             | $\hfill \square$ arithmétique de raison $\frac{2}{1}$                  |
| Question 10 La suite $(u_n)$ définie pour tout entier $n$ par : $u_n = \frac{6^{n-4}}{7^n}$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) :                                 |                             |                                                                        |
| géométric                                                                                                                                                                                                                                                | que de raison $\frac{6}{7}$ | arithmétique de raison 6                                               |
| ni arithm                                                                                                                                                                                                                                                | étique, ni géométrique      | géométrique de raison 6                                                |

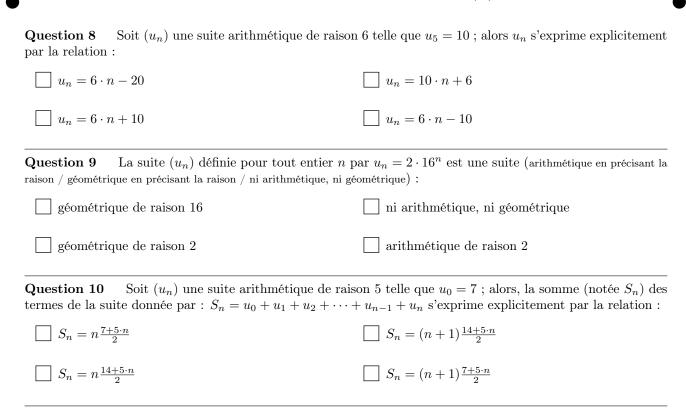
+1/3/58+


#### BAUMGARTHEN Tom


| $\Box$ géométrique de raison $\frac{11}{10}$                                                              | arithmétique de raison $\frac{11}{10}$                                                                                                               |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| geometrique de l'aison $\frac{10}{10}$                                                                    | $\square$ arrennice ique de l'aison $\frac{10}{10}$                                                                                                  |
| $\square$ géométrique de raison $\frac{10}{11}$                                                           | $\square$ arithmétique de raison $\frac{10}{11}$                                                                                                     |
|                                                                                                           | t entier $n$ la relation de récurrence suivante : $u_{n+1} = 15 \cdot u_n + 2$ ométrique en précisant la raison / ni arithmétique, ni géométrique) : |
| $\square$ arithmétique de raison 2                                                                        | géométrique de raison 15                                                                                                                             |
| ni arithmétique, ni géométrique                                                                           | $\square$ géométrique de raison 2                                                                                                                    |
|                                                                                                           | de raison 7 telle que $u_0 = 10$ ; alors, la somme (notée $S_n$ ) des $u_2 + \cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation :       |
|                                                                                                           | $S_n = 10\frac{1-7^n}{1-7}$                                                                                                                          |
|                                                                                                           |                                                                                                                                                      |
| Question 4 Soit $(u_n)$ une suite arithmétique par la relation :                                          | de raison 4 telle que $u_2 = 6$ ; alors $u_n$ s'exprime explicitement                                                                                |
| $    u_n = 4 \cdot n + 6 $                                                                                | $    u_n = 6 \cdot n + 4 $                                                                                                                           |
|                                                                                                           | $    u_n = 4 \cdot n - 6 $                                                                                                                           |
| Question 5 Soit $(u_n)$ une suite géométrique opar la relation :                                          | de raison $\frac{1}{7}$ telle que $u_4 = 11$ ; alors $u_n$ s'exprime explicitement                                                                   |
| $    u_n = 11 \cdot \frac{1}{7^n} $                                                                       | $  u_n = 11 \cdot \frac{1}{7^{n-4}} $                                                                                                                |
| $  u_n = 7 \cdot \frac{1}{11^n} $                                                                         | $  u_n = 7 \cdot \frac{1}{11^{n-4}} $                                                                                                                |
| Question 6 Soit $(u_n)$ une suite géométrique                                                             | de raison 4 telle que $u_1 = 7$ ; alors $u_{11}$ est égal à :                                                                                        |
| $u_{11} = 4^{10}$                                                                                         | $    u_{11} = 7 \cdot 4^{10} $                                                                                                                       |
| $u_{11} = 4 \cdot 7^{10}$                                                                                 | $u_{11} = 7 \cdot 4^{11}$                                                                                                                            |
| Question 7 La suite $(u_n)$ définie pour tout e raison / géométrique en précisant la raison / ni arithmét | entier $n$ par : $u_n = \frac{5^{n-5}}{6^n}$ est une suite (arithmétique en précisant la ique, ni géométrique) :                                     |
| ni arithmétique, ni géométrique                                                                           | géométrique de raison 5                                                                                                                              |
| $\Box$ géométrique de raison $\frac{5}{6}$                                                                | arithmétique de raison 5                                                                                                                             |

| <b>Question 8</b> Soit $(u_n)$ une suite arithmétique de rais termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$                                                                                    | on 7 telle que $u_0 = 12$ ; alors, la somme (notée $S_n$ ) des $+ u_{n-1} + u_n$ s'exprime explicitement par la relation : |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| $  S_n = (n+1)\frac{24+7\cdot n}{2} $                                                                                                                                                                             |                                                                                                                            |  |
|                                                                                                                                                                                                                   | $  S_n = (n+1)\frac{12+7\cdot n}{2} $                                                                                      |  |
| Question 9 La suite $(u_n)$ définie pour tout entier $n$ par $u_n = 14 \cdot n + 11$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : |                                                                                                                            |  |
| arithmétique de raison 14                                                                                                                                                                                         | ni arithmétique, ni géométrique                                                                                            |  |
| arithmétique de raison 11                                                                                                                                                                                         | géométrique de raison 14                                                                                                   |  |
| Question 10 La suite $(u_n)$ définie pour tout entier $n$ par $u_n = 20 \cdot 16^n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique):   |                                                                                                                            |  |
| arithmétique de raison 20                                                                                                                                                                                         | ni arithmétique, ni géométrique                                                                                            |  |
| géométrique de raison 20                                                                                                                                                                                          | géométrique de raison 16                                                                                                   |  |

+2/3/55+


#### QCM 1 / Lundi 28 septembre – Tle **BERARD** Lena La suite $(u_n)$ définie pour tout entier n par $u_n = 10 \cdot n + 18$ est une suite (arithmétique en précisant Question 1 la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison 10 arithmétique de raison 18 géométrique de raison 10 ni arithmétique, ni géométrique Soit $(u_n)$ une suite arithmétique de raison 5 telle que $u_0 = 7$ ; alors, la somme (notée $S_n$ ) des termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n$ s'exprime explicitement par la relation : $S_n = (n+1)\frac{14+5\cdot n}{2}$ $S_n = n \frac{14+5 \cdot n}{2}$ $S_n = n \frac{7+5 \cdot n}{2}$ Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = \frac{16}{17}u_n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison $\frac{16}{17}$ géométrique de raison $\frac{17}{16}$ géométrique de raison $\frac{16}{17}$ $\rfloor$ arithmétique de raison $\frac{17}{16}$ Question 4 Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = 2 \cdot u_n + 2$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique): géométrique de raison 2 arithmétique de raison 2 ni arithmétique, ni géométrique géométrique de raison 2 Soit $(u_n)$ une suite arithmétique de raison 9 telle que $u_3 = 10$ ; alors $u_n$ s'exprime explicitement Question 5 par la relation: $u_n = 9 \cdot n - 10$ $u_n = 9 \cdot n - 17$ $u_n = 10 \cdot n + 9$ $u_n = 9 \cdot n + 10$ La suite $(u_n)$ définie pour tout entier n par $u_n = -8 \cdot 8^n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : géométrique de raison -8 ni arithmétique, ni géométrique géométrique de raison 8 arithmétique de raison -8 Question 7 La suite $(u_n)$ définie pour tout entier n par : $u_n = \frac{19^{n-2}}{20^n}$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison 19 géométrique de raison 19 ni arithmétique, ni géométrique géométrique de raison $\frac{19}{20}$





CRESPI Julie

| Question 1 La suite $(u_n)$ définie pour tout entier $n$ principal de suite $(u_n)$ définie pour tout entier $n$ principal de suite $(u_n)$ d | par : $u_n = \frac{8^{n-3}}{9^n}$ est une suite (arithmétique en précisant la                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| raison / géométrique en précisant la raison / ni arithmétique, ni gé arithmétique de raison 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | géométrique de raison 8                                                                                                            |
| géométrique de raison $\frac{8}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ni arithmétique, ni géométrique                                                                                                    |
| Question 2 Une suite $(u_n)$ vérifiant pour tout entier $n$ est une suite (arithmétique en précisant la raison / géométrique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | la relation de récurrence suivante : $u_{n+1} = 15 \cdot u_n + -18$ en précisant la raison / ni arithmétique, ni géométrique) :    |
| géométrique de raison 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | arithmétique de raison -18                                                                                                         |
| ni arithmétique, ni géométrique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | géométrique de raison -18                                                                                                          |
| Question 3 Une suite $(u_n)$ vérifiant pour tout entier une suite (arithmétique en précisant la raison / géométrique en precisant la raison / geométrique en p | $n$ la relation de récurrence suivante : $u_{n+1} = \frac{12}{13}u_n$ est précisant la raison / ni arithmétique, ni géométrique) : |
| $\square$ arithmétique de raison $\frac{13}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\square$ arithmétique de raison $\frac{12}{13}$                                                                                   |
| $\square$ géométrique de raison $\frac{13}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\square$ géométrique de raison $\frac{12}{13}$                                                                                    |
| Question 4 Soit $(u_n)$ une suite géométrique de raison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n 6 telle que $u_3 = 10$ ; alors $u_5$ est égal à :                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $    u_5 = 6^2 $                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |
| Question 5 La suite $(u_n)$ définie pour tout entier $n$ pola raison / géométrique en précisant la raison / ni arithmétique, ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ar $u_n = 11 \cdot n + 14$ est une suite (arithmétique en précisant géométrique) :                                                 |
| arithmétique de raison 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | arithmétique de raison 14                                                                                                          |
| ni arithmétique, ni géométrique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | géométrique de raison 11                                                                                                           |
| Question 6 Soit $(u_n)$ une suite géométrique de raison par la relation :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n $\frac{1}{4}$ telle que $u_2 = 6$ ; alors $u_n$ s'exprime explicitement                                                          |
| $    u_n = 6 \cdot \frac{1}{4^n} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $  u_n = 4 \cdot \frac{1}{6^n} $                                                                                                   |
| $    u_n = 6 \cdot \frac{1}{4^{n-2}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $    u_n = 4 \cdot \frac{1}{6^{n-2}} $                                                                                             |
| Question 7 Soit $(u_n)$ une suite géométrique de raiso termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n 9 telle que $u_0 = 12$ ; alors, la somme (notée $S_n$ ) des $+u_{n-1} + u_n$ s'exprime explicitement par la relation :           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $  S_n = 12 \frac{1-9^n}{1-9} $                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $S_n = 12 \frac{1-9^n}{9-1}$                                                                                                       |



+4/3/49+

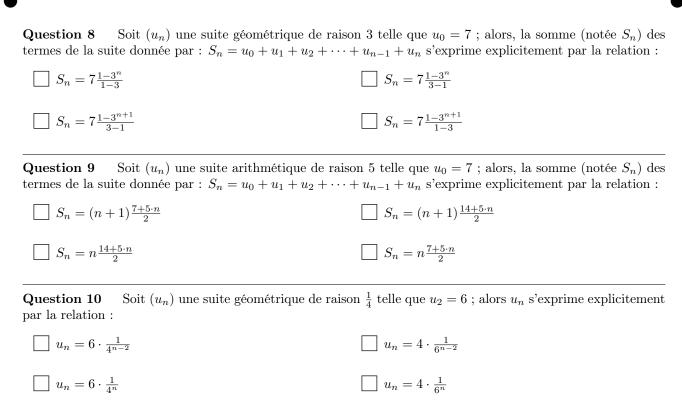
#### QCM 1 / Lundi 28 septembre – Tle **DUMORTIER** Juliane Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = 10 \cdot u_n + -15$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique): géométrique de raison -15 ni arithmétique, ni géométrique arithmétique de raison -15 géométrique de raison 10 La suite $(u_n)$ définie pour tout entier n par : $u_n = \frac{19^{n-2}}{20^n}$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison 19 ni arithmétique, ni géométrique géométrique de raison $\frac{19}{20}$ géométrique de raison 19 Question 3 Soit $(u_n)$ une suite arithmétique de raison 9 telle que $u_5 = 13$ ; alors $u_n$ s'exprime explicitement par la relation: $u_n = 9 \cdot n + 13$ $u_n = 9 \cdot n - 32$ $u_n = 9 \cdot n - 13$ $u_n = 13 \cdot n + 9$ La suite $(u_n)$ définie pour tout entier n par $u_n = -11 \cdot 2^n$ est une suite (arithmétique en précisant Question 4 la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : ni arithmétique, ni géométrique arithmétique de raison -11 géométrique de raison 2 géométrique de raison -11 Soit $(u_n)$ une suite arithmétique de raison 3 telle que $u_0 = 8$ ; alors, la somme (notée $S_n$ ) des termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n$ s'exprime explicitement par la relation : $S_n = (n+1)\frac{8+3\cdot n}{2}$ $S_n = (n+1)\frac{16+3\cdot n}{2}$ $S_n = n \frac{16+3\cdot n}{2}$ $S_n = n \frac{8+3\cdot n}{2}$ Soit $(u_n)$ une suite géométrique de raison 5 telle que $u_0 = 8$ ; alors, la somme (notée $S_n$ ) des termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation : $S_n = 8\frac{1-5^n}{1-5}$ $S_n = 8 \frac{1-5^{n+1}}{5-1}$ $S_n = 8 \frac{1 - 5^{n+1}}{1 - 5}$ $S_n = 8\frac{1-5^n}{5-1}$ La suite $(u_n)$ définie pour tout entier n par $u_n = 13 \cdot n + 3$ est une suite (arithmétique en précisant Question 7 la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison 13 géométrique de raison 13 ni arithmétique, ni géométrique arithmétique de raison 3

|                                                                                                                                                   | Question 8 Une suite $(u_n)$ vérifiant pour tout entier $n$ la relation de récurrence suivante : $u_{n+1} = \frac{12}{13}u_n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : |                                                  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Question 9 Soit $(u_n)$ une suite géométrique de raison $\frac{1}{5}$ telle que $u_5 = 9$ ; alors $u_n$ s'exprime explicitement par la relation : | $\square$ géométrique de raison $\frac{13}{12}$                                                                                                                                                                                                            | $\square$ arithmétique de raison $\frac{13}{12}$ |  |
| par la relation :                                                                                                                                 | $\square$ géométrique de raison $\frac{12}{13}$                                                                                                                                                                                                            | $\square$ arithmétique de raison $\frac{12}{13}$ |  |
|                                                                                                                                                   |                                                                                                                                                                                                                                                            |                                                  |  |
| Question 10 Soit $(u_n)$ une suite géométrique de raison 4 telle que $u_1 = 7$ ; alors $u_{11}$ est égal à :                                      |                                                                                                                                                                                                                                                            |                                                  |  |
|                                                                                                                                                   | $  u_n = 9 \cdot \frac{1}{5^{n-5}} $                                                                                                                                                                                                                       |                                                  |  |
| <u> </u>                                                                                                                                          | Question 10 Soit $(u_n)$ une suite géométrique de raison 4 telle que $u_1 = 7$ ; alors $u_{11}$ est égal à :                                                                                                                                               |                                                  |  |
|                                                                                                                                                   |                                                                                                                                                                                                                                                            | $u_{11} = 4^{10}$                                |  |
|                                                                                                                                                   | $u_{11} = 4 \cdot 7^{10}$                                                                                                                                                                                                                                  |                                                  |  |



FAURE Orlane

| <b>Question 1</b> Soit $(u_n)$ une suite arithmétique de raise termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$ | on 11 telle que $u_0 = 16$ ; alors, la somme (notée $S_n$ ) des $+u_{n-1}+u_n$ s'exprime explicitement par la relation :             |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| $  S_n = (n+1)^{\frac{32+11 \cdot n}{2}} $                                                                                      | $  S_n = (n+1) \frac{16+11 \cdot n}{2} $                                                                                             |
|                                                                                                                                 |                                                                                                                                      |
| Question 2 La suite $(u_n)$ définie pour tout entier $n$ la raison / géométrique en précisant la raison / ni arithmétique, n    | par $u_n = 21 \cdot 19^n$ est une suite (arithmétique en précisant ni géométrique) :                                                 |
| ni arithmétique, ni géométrique                                                                                                 | géométrique de raison 21                                                                                                             |
| arithmétique de raison 21                                                                                                       | géométrique de raison 19                                                                                                             |
| Question 3 Soit $(u_n)$ une suite géométrique de raise                                                                          | on 5 telle que $u_5 = 9$ ; alors $u_{11}$ est égal à :                                                                               |
|                                                                                                                                 | $    u_{11} = 9 \cdot 5^{11} $                                                                                                       |
| $    u_{11} = 9 \cdot 5^6 $                                                                                                     |                                                                                                                                      |
| Question 4 Soit $(u_n)$ une suite arithmétique de raiso par la relation :                                                       | on 9 telle que $u_3 = 10$ ; alors $u_n$ s'exprime explicitement                                                                      |
|                                                                                                                                 |                                                                                                                                      |
|                                                                                                                                 | $    u_n = 9 \cdot n - 10 $                                                                                                          |
| Question 5 Soit $(u_n)$ une suite géométrique de raise termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$         | on 9 telle que $u_0 = 12$ ; alors, la somme (notée $S_n$ ) des $+ u_{n-1} + u_n$ s'exprime explicitement par la relation :           |
| $S_n = 12 \frac{1-9^n}{9-1}$                                                                                                    |                                                                                                                                      |
| $S_n = 12 \frac{1-9^n}{1-9}$                                                                                                    |                                                                                                                                      |
| Question 6 Une suite $(u_n)$ vérifiant pour tout entier est une suite (arithmétique en précisant la raison / géométrique        | $n$ la relation de récurrence suivante : $u_{n+1} = 20 \cdot u_n + -4$ e en précisant la raison / ni arithmétique, ni géométrique) : |
| arithmétique de raison -4                                                                                                       | ni arithmétique, ni géométrique                                                                                                      |
| géométrique de raison 20                                                                                                        | géométrique de raison -4                                                                                                             |
| Question 7 La suite $(u_n)$ définie pour tout entier $n$ raison / géométrique en précisant la raison / ni arithmétique, ni g    | par : $u_n = \frac{7^{n-1}}{8^n}$ est une suite (arithmétique en précisant la géométrique) :                                         |
| ni arithmétique, ni géométrique                                                                                                 | $\square$ géométrique de raison $\frac{7}{8}$                                                                                        |
| arithmétique de raison 7                                                                                                        | géométrique de raison 7                                                                                                              |


| <b>Question 8</b> Soit $(u_n)$ une suite géométrique de raiso par la relation :                                                                                                                                       | n $\frac{1}{5}$ telle que $u_5 = 9$ ; alors $u_n$ s'exprime explicitement |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| $    u_n = 5 \cdot \frac{1}{9^{n-5}} $                                                                                                                                                                                | $  u_n = 9 \cdot \frac{1}{5^{n-5}} $                                      |  |
|                                                                                                                                                                                                                       | $  u_n = 5 \cdot \frac{1}{9^n} $                                          |  |
| Question 9 Une suite $(u_n)$ vérifiant pour tout entier $n$ la relation de récurrence suivante : $u_{n+1} = \frac{16}{17}u_n$ est une suite (arithmétique en précisant la raison / ni arithmétique, ni géométrique) : |                                                                           |  |
| $\square$ arithmétique de raison $\frac{16}{17}$                                                                                                                                                                      | $\square$ géométrique de raison $\frac{17}{16}$                           |  |
| $\square$ arithmétique de raison $\frac{17}{16}$                                                                                                                                                                      | $\square$ géométrique de raison $\frac{16}{17}$                           |  |
| Question 10 La suite $(u_n)$ définie pour tout entier $n$ par $u_n = 10 \cdot n + 18$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique):     |                                                                           |  |
| arithmétique de raison 18                                                                                                                                                                                             | arithmétique de raison 10                                                 |  |
| géométrique de raison 10                                                                                                                                                                                              | ni arithmétique, ni géométrique                                           |  |



#### QCM 1 / Lundi 28 septembre – Tle FLIPPE Antoine Soit $(u_n)$ une suite géométrique de raison 12 telle que $u_3 = 17$ ; alors $u_8$ est égal à : $u_8 = 12 \cdot 17^5$ $u_8 = 17 \cdot 12^5$ $u_8 = 17 \cdot 12^8$ $u_8 = 12^5$ Soit $(u_n)$ une suite arithmétique de raison 2 telle que $u_1 = 3$ ; alors $u_n$ s'exprime explicitement Question 2 par la relation: $u_n = 2 \cdot n + 1$ $u_n = 3 \cdot n + 2$ $u_n = 2 \cdot n - 3$ $u_n = 2 \cdot n + 3$ Question 3 La suite $(u_n)$ définie pour tout entier n par : $u_n = \frac{15^{n-3}}{16^n}$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison 15 géométrique de raison 15 ni arithmétique, ni géométrique géométrique de raison $\frac{15}{16}$ Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = \frac{15}{16}u_n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison $\frac{16}{15}$ arithmétique de raison $\frac{15}{16}$ géométrique de raison $\frac{16}{15}$ $\int$ géométrique de raison $\frac{15}{16}$ Question 5 La suite $(u_n)$ définie pour tout entier n par $u_n = -5 \cdot n + 8$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison -5 ni arithmétique, ni géométrique géométrique de raison -5 arithmétique de raison 8 Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = 11 \cdot u_n + -4$ Question 6 est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique): arithmétique de raison -4 ni arithmétique, ni géométrique géométrique de raison 11 géométrique de raison -4 La suite $(u_n)$ définie pour tout entier n par $u_n = -7 \cdot 15^n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : ni arithmétique, ni géométrique arithmétique de raison -7

géométrique de raison 15

géométrique de raison -7





#### QCM 1 / Lundi 28 septembre – Tle FLORES Anais La suite $(u_n)$ définie pour tout entier n par $u_n = 3 \cdot 11^n$ est une suite (arithmétique en précisant la Question 1 raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison 3 géométrique de raison 3 géométrique de raison 11 ni arithmétique, ni géométrique Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = \frac{4}{5}u_n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : géométrique de raison $\frac{5}{4}$ géométrique de raison $\frac{4}{5}$ arithmétique de raison $\frac{4}{5}$ arithmétique de raison $\frac{5}{4}$ La suite $(u_n)$ définie pour tout entier n par $u_n = 11 \cdot n + 6$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : géométrique de raison 11 arithmétique de raison 11 ni arithmétique, ni géométrique arithmétique de raison 6 Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = 5 \cdot u_n + -7$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique): arithmétique de raison -7 géométrique de raison -7 ni arithmétique, ni géométrique géométrique de raison 5 La suite $(u_n)$ définie pour tout entier n par : $u_n = \frac{11^{n-5}}{12^n}$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : géométrique de raison $\frac{11}{12}$ arithmétique de raison 11 ni arithmétique, ni géométrique géométrique de raison 11 Question 6 Soit $(u_n)$ une suite arithmétique de raison 9 telle que $u_3 = 10$ ; alors $u_n$ s'exprime explicitement par la relation: $u_n = 9 \cdot n - 10$ $u_n = 10 \cdot n + 9$ $u_n = 9 \cdot n - 17$ $u_n = 9 \cdot n + 10$ Soit $(u_n)$ une suite géométrique de raison $\frac{1}{3}$ telle que $u_5=6$ ; alors $u_n$ s'exprime explicitement Question 7 par la relation: $u_n = 3 \cdot \frac{1}{6^n}$ $u_n = 6 \cdot \frac{1}{3n}$ $u_n = 3 \cdot \frac{1}{6n-5}$ $u_n = 6 \cdot \frac{1}{3n-5}$

| Question 8                     | Soit $(u_n)$ une suite géométrique de raison | 8 telle que $u_5 = 13$ ; alors $u_{10}$ est égal à :                                                                    |
|--------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| $    u_{10} = 8 \cdot 1 $      | $13^{5}$                                     |                                                                                                                         |
|                                | $8^{10}$                                     | $    u_{10} = 13 \cdot 8^5 $                                                                                            |
| Question 9<br>termes de la sui |                                              | n 3 telle que $u_0 = 8$ ; alors, la somme (notée $S_n$ ) des $-u_{n-1} + u_n$ s'exprime explicitement par la relation : |
|                                | $-1)\frac{16+3\cdot n}{2}$                   |                                                                                                                         |
|                                | $-1)\frac{8+3\cdot n}{2}$                    |                                                                                                                         |
| Question 10 termes de la sui   | • • •                                        | on 3 telle que $u_0 = 7$ ; alors, la somme (notée $S_n$ ) des $u_{n-1} + u_n$ s'exprime explicitement par la relation : |
| $  S_n = 7\frac{1-3}{3-1} $    | $\frac{3^n}{1}$                              |                                                                                                                         |
| $  S_n = 7\frac{1-3}{3} $      | $\frac{3^{n+1}}{-1}$                         |                                                                                                                         |

+8/3/37+

#### FORNELLI Eva

| Question 1 La suite $(u_n)$ définie pour tout entier $n$ la raison / géométrique en précisant la raison / ni arithmétique, ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | par : $u_n = \frac{10^{n-2}}{11^n}$ est une suite (arithmétique en précisant à géométrique) :                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| géométrique de raison 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\square$ géométrique de raison $\frac{10}{11}$                                                                                    |
| ni arithmétique, ni géométrique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | arithmétique de raison 10                                                                                                          |
| Question 2 Une suite $(u_n)$ vérifiant pour tout entier une suite (arithmétique en précisant la raison / géométrique en precisant la raison / geométrique en p | $n$ la relation de récurrence suivante : $u_{n+1} = \frac{10}{11}u_n$ est précisant la raison / ni arithmétique, ni géométrique) : |
| $\square$ arithmétique de raison $\frac{11}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\square$ arithmétique de raison $\frac{10}{11}$                                                                                   |
| $\square$ géométrique de raison $\frac{11}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\square$ géométrique de raison $\frac{10}{11}$                                                                                    |
| Question 3 Soit $(u_n)$ une suite géométrique de raisce termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on 5 telle que $u_0 = 9$ ; alors, la somme (notée $S_n$ ) des $+u_{n-1} + u_n$ s'exprime explicitement par la relation :           |
| $  S_n = 9 \frac{1 - 5^{n+1}}{1 - 5} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $  S_n = 9 \frac{1-5^n}{1-5} $                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $  S_n = 9 \frac{1-5^n}{5-1} $                                                                                                     |
| Question 4 Soit $(u_n)$ une suite géométrique de raiso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n 6 telle que $u_3 = 10$ ; alors $u_5$ est égal à :                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $  u_5 = 10 \cdot 6^2 $                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $    u_5 = 10 \cdot 6^5 $                                                                                                          |
| Question 5 Soit $(u_n)$ une suite arithmétique de raistermes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on 5 telle que $u_0 = 8$ ; alors, la somme (notée $S_n$ ) des $+u_{n-1} + u_n$ s'exprime explicitement par la relation :           |
| $  S_n = (n+1)\frac{8+5\cdot n}{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $  S_n = (n+1)\frac{16+5\cdot n}{2} $                                                                                              |
| Question 6 La suite $(u_n)$ définie pour tout entier $n$ la raison / géométrique en précisant la raison / ni arithmétique, ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | par $u_n = -10 \cdot 5^n$ est une suite (arithmétique en précisant i géométrique) :                                                |
| ni arithmétique, ni géométrique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | géométrique de raison 5                                                                                                            |
| géométrique de raison -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | arithmétique de raison -10                                                                                                         |
| Question 7 Soit $(u_n)$ une suite géométrique de raison par la relation :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n $\frac{1}{4}$ telle que $u_3 = 9$ ; alors $u_n$ s'exprime explicitement                                                          |
| $    u_n = 9 \cdot \frac{1}{4^{n-3}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $  u_n = 4 \cdot \frac{1}{9^{n-3}} $                                                                                               |
| $    u_n = 4 \cdot \frac{1}{9^n} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $    u_n = 9 \cdot \frac{1}{4^n} $                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |

| Question 8<br>par la relation                                                                                                                                                                                     |                   | n 2 telle que $u_4 = 7$ ; alors $u_n$ s'exprime explicitement                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                   | +7                |                                                                                                                                   |
|                                                                                                                                                                                                                   | . – 1             |                                                                                                                                   |
| Question 9 La suite $(u_n)$ définie pour tout entier $n$ par $u_n = -18 \cdot n + 16$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique): |                   |                                                                                                                                   |
| arithmétic                                                                                                                                                                                                        | que de raison 16  | ni arithmétique, ni géométrique                                                                                                   |
| géométric                                                                                                                                                                                                         | que de raison -18 | arithmétique de raison -18                                                                                                        |
| Question 10 est une suite (a                                                                                                                                                                                      |                   | $n$ la relation de récurrence suivante : $u_{n+1} = 12 \cdot u_n + 2$ en précisant la raison / ni arithmétique, ni géométrique) : |
| géométric                                                                                                                                                                                                         | ue de raison 12   | $\square$ géométrique de raison 2                                                                                                 |
| arithmétic                                                                                                                                                                                                        | que de raison 2   | ni arithmétique, ni géométrique                                                                                                   |

+9/3/34+

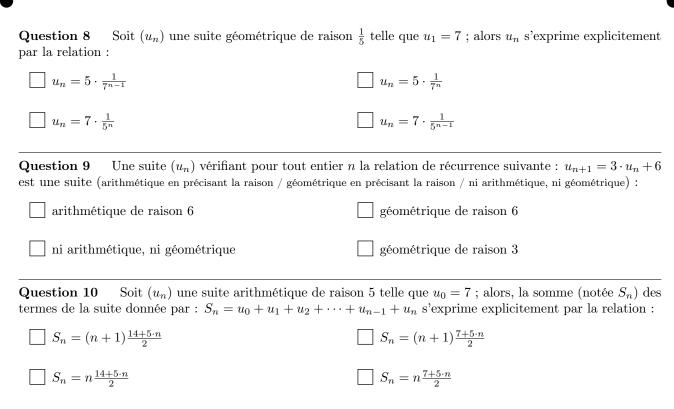
#### QCM 1 / Lundi 28 septembre – Tle **GALLEL Yasmine** La suite $(u_n)$ définie pour tout entier n par $u_n = 5 \cdot 2^n$ est une suite (arithmétique en précisant la Question 1 raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : géométrique de raison 2 géométrique de raison 5 ni arithmétique, ni géométrique arithmétique de raison 5 Soit $(u_n)$ une suite géométrique de raison 10 telle que $u_2 = 13$ ; alors $u_7$ est égal à : Question 2 $u_7 = 13 \cdot 10^5$ $u_7 = 10 \cdot 13^5$ $u_7 = 13 \cdot 10^7$ $u_7 = 10^5$ Question 3 Soit $(u_n)$ une suite géométrique de raison $\frac{1}{3}$ telle que $u_5 = 7$ ; alors $u_n$ s'exprime explicitement par la relation: $u_n = 7 \cdot \frac{1}{3^n}$ $u_n = 3 \cdot \frac{1}{7^{n-5}}$ $u_n = 3 \cdot \frac{1}{7^n}$ $u_n = 7 \cdot \frac{1}{3n-5}$ Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = \frac{6}{7}u_n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : géométrique de raison $\frac{6}{7}$ arithmétique de raison $\frac{6}{7}$ arithmétique de raison $\frac{7}{6}$ géométrique de raison $\frac{7}{6}$ Soit $(u_n)$ une suite arithmétique de raison 11 telle que $u_0 = 15$ ; alors, la somme (notée $S_n$ ) des termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n$ s'exprime explicitement par la relation : $S_n = (n+1)\frac{15+11\cdot n}{2}$ $S_n = n \frac{15+11 \cdot n}{2}$ $S_n = (n+1)\frac{30+11 \cdot n}{2}$ La suite $(u_n)$ définie pour tout entier n par $u_n = 14 \cdot n + 11$ est une suite (arithmétique en précisant Question 6 la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison 14 arithmétique de raison 11 ni arithmétique, ni géométrique géométrique de raison 14 Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = 11 \cdot u_n + 5$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison 5 géométrique de raison 5

géométrique de raison 11

ni arithmétique, ni géométrique

| <b>Question 8</b> Soit $(u_n)$ une suite arithmétique de raison par la relation :                                                                                                                                                             | $10$ telle que $u_3=14$ ; alors $u_n$ s'exprime explicitement |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
|                                                                                                                                                                                                                                               | $  u_n = 10 \cdot n - 14 $                                    |  |
|                                                                                                                                                                                                                                               | $  u_n = 10 \cdot n - 16 $                                    |  |
| Question 9 Soit $(u_n)$ une suite géométrique de raison 3 telle que $u_0 = 5$ ; alors, la somme (notée $S_n$ ) des termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation : |                                                               |  |
|                                                                                                                                                                                                                                               |                                                               |  |
|                                                                                                                                                                                                                                               | $  S_n = 5\frac{1-3^n}{1-3} $                                 |  |
| Question 10 La suite $(u_n)$ définie pour tout entier $n$ par : $u_n = \frac{16^{n-1}}{17^n}$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) :                    |                                                               |  |
| arithmétique de raison 16                                                                                                                                                                                                                     | ni arithmétique, ni géométrique                               |  |
| géométrique de raison 16                                                                                                                                                                                                                      | $\square$ géométrique de raison $\frac{16}{17}$               |  |

+10/3/31+


#### GAUDEFROY Baptiste

| <b>Question 1</b> Soit $(u_n)$ une suite géométrique de raison termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$ | n 9 telle que $u_0 = 11$ ; alors, la somme (notée $S_n$ ) des $u_{n-1} + u_n$ s'exprime explicitement par la relation :           |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                 |                                                                                                                                   |
|                                                                                                                                 |                                                                                                                                   |
| Question 2 Soit $(u_n)$ une suite arithmétique de raison par la relation :                                                      | n 2 telle que $u_1 = 3$ ; alors $u_n$ s'exprime explicitement                                                                     |
|                                                                                                                                 |                                                                                                                                   |
|                                                                                                                                 |                                                                                                                                   |
| Question 3 Soit $(u_n)$ une suite géométrique de raison                                                                         | n 6 telle que $u_4 = 11$ ; alors $u_8$ est égal à :                                                                               |
|                                                                                                                                 |                                                                                                                                   |
|                                                                                                                                 |                                                                                                                                   |
| Question 4 Soit $(u_n)$ une suite géométrique de raison par la relation :                                                       | $\frac{1}{8}$ telle que $u_2=10$ ; alors $u_n$ s'exprime explicitement                                                            |
| $    u_n = 8 \cdot \frac{1}{10^{n-2}} $                                                                                         |                                                                                                                                   |
| $    u_n = 10 \cdot \frac{1}{8^{n-2}} $                                                                                         | $    u_n = 8 \cdot \frac{1}{10^n} $                                                                                               |
| Question 5 Une suite $(u_n)$ vérifiant pour tout entier que suite (arithmétique en précisant la raison / géométrique en pr      | $n$ la relation de récurrence suivante : $u_{n+1} = \frac{10}{11}u_n$ est récisant la raison / ni arithmétique, ni géométrique) : |
| $\hfill \square$ arithmétique de raison $\frac{11}{10}$                                                                         | $\square$ géométrique de raison $\frac{10}{11}$                                                                                   |
| $\square$ géométrique de raison $\frac{11}{10}$                                                                                 | $\hfill \square$ arithmétique de raison $\frac{10}{11}$                                                                           |
| Question 6 La suite $(u_n)$ définie pour tout entier $n$ p la raison / géométrique en précisant la raison / ni arithmétique, ni | par $u_n = -11 \cdot 2^n$ est une suite (arithmétique en précisant géométrique) :                                                 |
| $\square$ géométrique de raison 2                                                                                               | géométrique de raison -11                                                                                                         |
| ni arithmétique, ni géométrique                                                                                                 | arithmétique de raison -11                                                                                                        |
| Question 7 Une suite $(u_n)$ vérifiant pour tout entier $u_n$ est une suite (arithmétique en précisant la raison / géométrique  | $n$ la relation de récurrence suivante : $u_{n+1} = 3 \cdot u_n + 6$ en précisant la raison / ni arithmétique, ni géométrique) :  |
| arithmétique de raison 6                                                                                                        | $\hfill \Box$ géométrique de raison 3                                                                                             |
| géométrique de raison 6                                                                                                         | ni arithmétique, ni géométrique                                                                                                   |

| <b>Question 8</b> Soit $(u_n)$ une suite arithmétique de raison 5 telle que $u_0 = 8$ ; alors, la somme (notée $S_n$ ) des termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation : |                                                                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| $  S_n = (n+1)\frac{8+5\cdot n}{2} $                                                                                                                                                                                                                  |                                                                                                    |  |
| $  S_n = (n+1)\frac{16+5\cdot n}{2} $                                                                                                                                                                                                                 |                                                                                                    |  |
| Question 9 La suite $(u_n)$ définie pour tout entier $n$ par $u_n = 2 \cdot n + 13$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique):                                       |                                                                                                    |  |
| arithmétique de raison 13                                                                                                                                                                                                                             | ni arithmétique, ni géométrique                                                                    |  |
| $\square$ arithmétique de raison 2                                                                                                                                                                                                                    | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                           |  |
| Question 10 La suite $(u_n)$ définie pour tout entier la raison / géométrique en précisant la raison / ni arithmétique,                                                                                                                               | $n$ par : $u_n = \frac{17^{n-3}}{18^n}$ est une suite (arithmétique en précisant ni géométrique) : |  |
| arithmétique de raison 17                                                                                                                                                                                                                             | géométrique de raison 17                                                                           |  |
| $\square$ géométrique de raison $\frac{17}{18}$                                                                                                                                                                                                       | ni arithmétique, ni géométrique                                                                    |  |

GAUDEFROY Léa

|                                                                                                                     | at entier $n$ la relation de récurrence suivante : $u_{n+1} = \frac{1}{2}u_n$ est rique en précisant la raison / ni arithmétique, ni géométrique) : |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| $\square$ arithmétique de raison $\frac{2}{1}$                                                                      | $\hfill \Box$ géométrique de raison $\frac{1}{2}$                                                                                                   |
| $\square$ géométrique de raison 2                                                                                   | $\hfill \square$ arithmétique de raison $\frac{1}{2}$                                                                                               |
| Question 2 La suite $(u_n)$ définie pour tout e raison / géométrique en précisant la raison / ni arithmét           | ntier $n$ par : $u_n = \frac{9^{n-1}}{10^n}$ est une suite (arithmétique en précisant la ique, ni géométrique) :                                    |
| ni arithmétique, ni géométrique                                                                                     | arithmétique de raison 9                                                                                                                            |
| $\square$ géométrique de raison $\frac{9}{10}$                                                                      | géométrique de raison 9                                                                                                                             |
| Question 3 Soit $(u_n)$ une suite arithmétique par la relation :                                                    | de raison 4 telle que $u_2 = 6$ ; alors $u_n$ s'exprime explicitement                                                                               |
|                                                                                                                     | $    u_n = 4 \cdot n - 6 $                                                                                                                          |
|                                                                                                                     |                                                                                                                                                     |
| Question 4 La suite $(u_n)$ définie pour tout $\epsilon$ la raison / géométrique en précisant la raison / ni arithm | entier $n$ par $u_n = 14 \cdot 18^n$ est une suite (arithmétique en précisant aétique, ni géométrique) :                                            |
| ni arithmétique, ni géométrique                                                                                     | arithmétique de raison 14                                                                                                                           |
| géométrique de raison 14                                                                                            | géométrique de raison 18                                                                                                                            |
|                                                                                                                     | de raison 9 telle que $u_0 = 12$ ; alors, la somme (notée $S_n$ ) des $u_2 + \cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation :      |
|                                                                                                                     |                                                                                                                                                     |
|                                                                                                                     |                                                                                                                                                     |
| Question 6 La suite $(u_n)$ définie pour tout précisant la raison / géométrique en précisant la raison /            | entier $n$ par $u_n=-18\cdot n+16$ est une suite (arithmétique en ni arithmétique, ni géométrique) :                                                |
| arithmétique de raison 16                                                                                           | géométrique de raison -18                                                                                                                           |
| arithmétique de raison -18                                                                                          | ni arithmétique, ni géométrique                                                                                                                     |
| Question 7 Soit $(u_n)$ une suite géométrique                                                                       | de raison 10 telle que $u_4 = 11$ ; alors $u_{13}$ est égal à :                                                                                     |
|                                                                                                                     | $    u_{13} = 10 \cdot 11^9 $                                                                                                                       |
|                                                                                                                     | $    u_{13} = 11 \cdot 10^9 $                                                                                                                       |
|                                                                                                                     |                                                                                                                                                     |

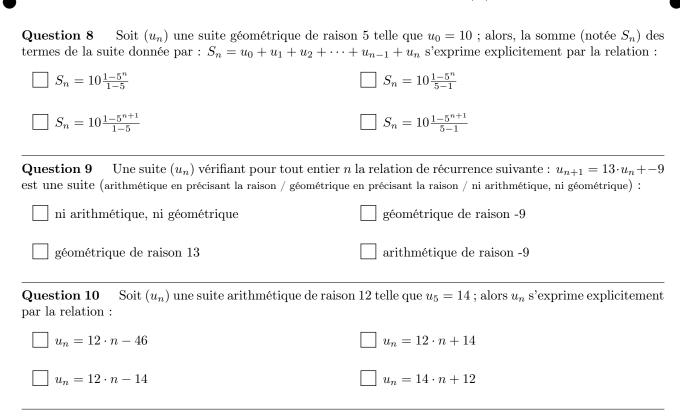


GUDEFIN Fanny

| <b>Question 1</b> Soit $(u_n)$ une suite géométrique de raisontermes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$  | n 9 telle que $u_0 = 12$ ; alors, la somme (notée $S_n$ ) des $u_{n-1} + u_n$ s'exprime explicitement par la relation :           |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                 |                                                                                                                                   |
|                                                                                                                                 |                                                                                                                                   |
| Question 2 La suite $(u_n)$ définie pour tout entier $n$ p la raison / géométrique en précisant la raison / ni arithmétique, ni | ar $u_n=18\cdot n+4$ est une suite (arithmétique en précisant géométrique) :                                                      |
| $\square$ arithmétique de raison 4                                                                                              | ni arithmétique, ni géométrique                                                                                                   |
| arithmétique de raison 18                                                                                                       | géométrique de raison 18                                                                                                          |
| Question 3 Soit $(u_n)$ une suite géométrique de raison                                                                         | n 5 telle que $u_5 = 9$ ; alors $u_{11}$ est égal à :                                                                             |
|                                                                                                                                 | $    u_{11} = 5 \cdot 9^6 $                                                                                                       |
| $    u_{11} = 9 \cdot 5^{11} $                                                                                                  | $    u_{11} = 9 \cdot 5^6 $                                                                                                       |
| Question 4 Soit $(u_n)$ une suite géométrique de raison par la relation :                                                       | $\frac{1}{4}$ telle que $u_2 = 6$ ; alors $u_n$ s'exprime explicitement                                                           |
| $   u_n = 6 \cdot \frac{1}{4^{n-2}} $                                                                                           | $    u_n = 4 \cdot \frac{1}{6^{n-2}} $                                                                                            |
|                                                                                                                                 |                                                                                                                                   |
| Question 5 Soit $(u_n)$ une suite arithmétique de raiso termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$        | n 7 telle que $u_0 = 11$ ; alors, la somme (notée $S_n$ ) des $+u_{n-1} + u_n$ s'exprime explicitement par la relation :          |
|                                                                                                                                 | $  S_n = (n+1)^{\frac{11+7\cdot n}{2}} $                                                                                          |
|                                                                                                                                 | $  S_n = (n+1)^{\frac{22+7\cdot n}{2}} $                                                                                          |
| Question 6 Une suite $(u_n)$ vérifiant pour tout entier $r$ est une suite (arithmétique en précisant la raison / géométrique    | $n$ la relation de récurrence suivante : $u_{n+1} = 19 \cdot u_n + 2$ en précisant la raison / ni arithmétique, ni géométrique) : |
| ni arithmétique, ni géométrique                                                                                                 | géométrique de raison 19                                                                                                          |
| $\square$ géométrique de raison 2                                                                                               | $\square$ arithmétique de raison 2                                                                                                |
| Question 7 La suite $(u_n)$ définie pour tout entier $n$ la raison / géométrique en précisant la raison / ni arithmétique, ni   | par : $u_n = \frac{12^{n-1}}{13^n}$ est une suite (arithmétique en précisant géométrique) :                                       |
| $\square$ géométrique de raison $\frac{12}{13}$                                                                                 | ni arithmétique, ni géométrique                                                                                                   |
| arithmétique de raison 12                                                                                                       | géométrique de raison 12                                                                                                          |

| Question 8 Une suite $(u_n)$ vérifiant pour tout entier $n$ la relation de récurrence suivante : $u_{n+1} = \frac{9}{10}u_n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : |                                                               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| $\hfill \square$ arithmétique de raison $\frac{10}{9}$                                                                                                                                                                                                    | $\square$ géométrique de raison $\frac{9}{10}$                |  |
| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                  | $\square$ arithmétique de raison $\frac{9}{10}$               |  |
| Question 9 Soit $(u_n)$ une suite arithmétique de raison par la relation :                                                                                                                                                                                | 12 telle que $u_3 = 14$ ; alors $u_n$ s'exprime explicitement |  |
|                                                                                                                                                                                                                                                           | $    u_n = 12 \cdot n - 22 $                                  |  |
|                                                                                                                                                                                                                                                           | $  u_n = 12 \cdot n - 14 $                                    |  |
| Question 10 La suite $(u_n)$ définie pour tout entier $n$ par $u_n = -6 \cdot 13^n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) :                                          |                                                               |  |
| géométrique de raison 13                                                                                                                                                                                                                                  | ni arithmétique, ni géométrique                               |  |
| arithmétique de raison -6                                                                                                                                                                                                                                 | géométrique de raison -6                                      |  |




IMBS Arthur

| Question 1 La suite $(u_n)$ définie pour tou la raison / géométrique en précisant la raison / ni ar | nt entier $n$ par $u_n=-5\cdot n+8$ est une suite (arithmétique en précisant ithmétique, ni géométrique) :                                                  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| arithmétique de raison -5                                                                           | arithmétique de raison 8                                                                                                                                    |
| géométrique de raison -5                                                                            | ni arithmétique, ni géométrique                                                                                                                             |
| Question 2 La suite $(u_n)$ définie pour to raison / géométrique en précisant la raison / ni arith  | ut entier $n$ par : $u_n = \frac{6^{n-4}}{7^n}$ est une suite (arithmétique en précisant la unétique, ni géométrique) :                                     |
| géométrique de raison 6                                                                             | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                    |
| $\square$ arithmétique de raison 6                                                                  | ni arithmétique, ni géométrique                                                                                                                             |
|                                                                                                     | que de raison 5 telle que $u_0 = 9$ ; alors, la somme (notée $S_n$ ) des $+u_2 + \cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation :          |
| $S_n = 9\frac{1-5^{n+1}}{1-5}$                                                                      |                                                                                                                                                             |
|                                                                                                     | $  S_n = 9 \frac{1-5^n}{1-5} $                                                                                                                              |
| Question 4 Soit $(u_n)$ une suite arithmétic par la relation :                                      | que de raison 8 telle que $u_5=11$ ; alors $u_n$ s'exprime explicitement                                                                                    |
| $  u_n = 8 \cdot n - 29 $                                                                           |                                                                                                                                                             |
|                                                                                                     |                                                                                                                                                             |
|                                                                                                     | r tout entier $n$ la relation de récurrence suivante : $u_{n+1} = \frac{1}{2}u_n$ est ométrique en précisant la raison / ni arithmétique, ni géométrique) : |
| $\square$ géométrique de raison 2                                                                   | $\hfill \square$ arithmétique de raison $\frac{2}{1}$                                                                                                       |
| $\hfill \Box$ géométrique de raison $\frac{1}{2}$                                                   | $\hfill \square$ arithmétique de raison $\frac{1}{2}$                                                                                                       |
| Question 6 Soit $(u_n)$ une suite géométric par la relation :                                       | que de raison $\frac{1}{6}$ telle que $u_4=11$ ; alors $u_n$ s'exprime explicitement                                                                        |
| $  u_n = 6 \cdot \frac{1}{11^n} $                                                                   | $  u_n = 6 \cdot \frac{1}{11^{n-4}} $                                                                                                                       |
| $   u_n = 11 \cdot \frac{1}{6^{n-4}} $                                                              | $    u_n = 11 \cdot \frac{1}{6^n} $                                                                                                                         |
|                                                                                                     | que de raison 7 telle que $u_0 = 10$ ; alors, la somme (notée $S_n$ ) des $u_1 + u_2 + \cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation :    |
| $  S_n = (n+1)\frac{20+7\cdot n}{2} $                                                               |                                                                                                                                                             |
| $    S_n = n^{\frac{10+7 \cdot n}{2}} $                                                             | $  S_n = (n+1) \frac{10+7 \cdot n}{2} $                                                                                                                     |

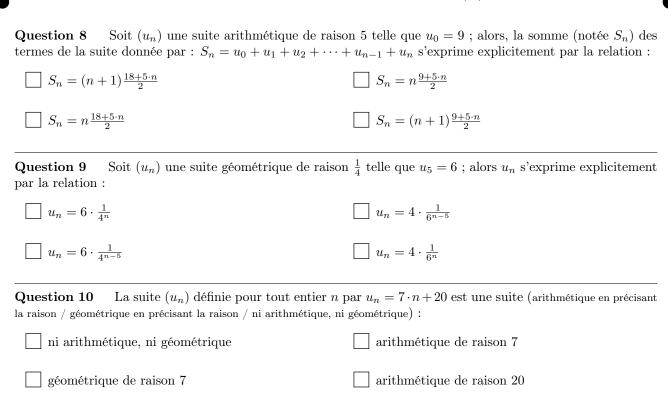
| Question 8 La suite $(u_n)$ définie pour tout entier $n$ par $u_n = 16 \cdot 20^n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique): |                                                                                                                                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| géométrique de raison 20                                                                                                                                                                                       | géométrique de raison 16                                                                                                         |  |
| ni arithmétique, ni géométrique                                                                                                                                                                                | arithmétique de raison 16                                                                                                        |  |
| Question 9 Soit $(u_n)$ une suite géométrique de raison                                                                                                                                                        | n 2 telle que $u_4 = 5$ ; alors $u_{13}$ est égal à :                                                                            |  |
| $    u_{13} = 2 \cdot 5^9 $                                                                                                                                                                                    |                                                                                                                                  |  |
| $    u_{13} = 5 \cdot 2^9 $                                                                                                                                                                                    |                                                                                                                                  |  |
| Question 10 Une suite $(u_n)$ vérifiant pour tout entier est une suite (arithmétique en précisant la raison / géométrique                                                                                      | $n$ la relation de récurrence suivante : $u_{n+1} = 3 \cdot u_n + 6$ en précisant la raison / ni arithmétique, ni géométrique) : |  |
| géométrique de raison 3                                                                                                                                                                                        | ni arithmétique, ni géométrique                                                                                                  |  |
| $\square$ arithmétique de raison 6                                                                                                                                                                             | géométrique de raison 6                                                                                                          |  |

LAVASTRE Kim

| $\square$ arithmétique de raison $\frac{16}{17}$                                                                   | arithmétique de raison $\frac{17}{16}$                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| arresiment que de raison 17                                                                                        |                                                                                                                                          |
| $\square$ géométrique de raison $\frac{17}{16}$                                                                    | $\square$ géométrique de raison $\frac{16}{17}$                                                                                          |
| Question 2 La suite $(u_n)$ définie pour tout entie la raison / géométrique en précisant la raison / ni arithmétic | er $n$ par $u_n=10\cdot n+18$ est une suite (arithmétique en précisant que, ni géométrique) :                                            |
| géométrique de raison 10                                                                                           | ni arithmétique, ni géométrique                                                                                                          |
| arithmétique de raison 18                                                                                          | arithmétique de raison 10                                                                                                                |
| Question 3 Soit $(u_n)$ une suite géométrique de r<br>par la relation :                                            | raison $\frac{1}{7}$ telle que $u_4 = 11$ ; alors $u_n$ s'exprime explicitement                                                          |
| $    u_n = 7 \cdot \frac{1}{11^{n-4}} $                                                                            | $  u_n = 7 \cdot \frac{1}{11^n} $                                                                                                        |
|                                                                                                                    | $    u_n = 11 \cdot \frac{1}{7^{n-4}} $                                                                                                  |
| Question 4 La suite $(u_n)$ définie pour tout entie la raison / géométrique en précisant la raison / ni arithmétic | er $n$ par $u_n = -5 \cdot 17^n$ est une suite (arithmétique en précisant que, ni géométrique) :                                         |
| arithmétique de raison -5                                                                                          | géométrique de raison -5                                                                                                                 |
| géométrique de raison 17                                                                                           | ni arithmétique, ni géométrique                                                                                                          |
| Question 5 La suite $(u_n)$ définie pour tout entier raison / géométrique en précisant la raison / ni arithmétique | er $n$ par : $u_n = \frac{3^{n-5}}{4^n}$ est une suite (arithmétique en précisant la $e$ , ni géométrique) :                             |
| ni arithmétique, ni géométrique                                                                                    | géométrique de raison 3                                                                                                                  |
| $\square$ géométrique de raison $\frac{3}{4}$                                                                      | arithmétique de raison 3                                                                                                                 |
|                                                                                                                    | raison 11 telle que $u_0 = 16$ ; alors, la somme (notée $S_n$ ) des $+ \cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation : |
| $  S_n = (n+1)\frac{32+11 \cdot n}{2} $                                                                            | $  S_n = n \frac{32 + 11 \cdot n}{2} $                                                                                                   |
| $  S_n = (n+1)\frac{16+11 \cdot n}{2} $                                                                            | $  S_n = n \frac{16 + 11 \cdot n}{2} $                                                                                                   |
| Question 7 Soit $(u_n)$ une suite géométrique de                                                                   | raison 6 telle que $u_4 = 11$ ; alors $u_8$ est égal à :                                                                                 |
|                                                                                                                    | $    u_8 = 6 \cdot 11^4 $                                                                                                                |
| $    u_8 = 11 \cdot 6^8 $                                                                                          | $    u_8 = 11 \cdot 6^4 $                                                                                                                |



#### QCM 1 / Lundi 28 septembre – Tle LONGUEVILLE Nina Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = \frac{6}{7}u_n$ est Question 1 une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique): arithmétique de raison $\frac{6}{7}$ géométrique de raison $\frac{6}{7}$ arithmétique de raison $\frac{7}{6}$ géométrique de raison $\frac{7}{6}$ La suite $(u_n)$ définie pour tout entier n par : $u_n = \frac{4^{n-4}}{5^n}$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : géométrique de raison $\frac{4}{5}$ ni arithmétique, ni géométrique géométrique de raison 4 arithmétique de raison 4 Question 3 La suite $(u_n)$ définie pour tout entier n par $u_n = 15 \cdot n + 8$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison 15 géométrique de raison 15 ni arithmétique, ni géométrique arithmétique de raison 8 Soit $(u_n)$ une suite arithmétique de raison 5 telle que $u_0 = 9$ ; alors, la somme (notée $S_n$ ) des Question 4 termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n$ s'exprime explicitement par la relation : $S_n = n \frac{9+5 \cdot n}{2}$ $S_n = n \frac{18+5 \cdot n}{2}$ $S_n = (n+1)^{\frac{9+5\cdot n}{2}}$ $S_n = (n+1)\frac{18+5\cdot n}{2}$ Question 5 Soit $(u_n)$ une suite arithmétique de raison 4 telle que $u_2 = 6$ ; alors $u_n$ s'exprime explicitement par la relation: $u_n = 4 \cdot n - 6$ $u_n = 4 \cdot n + 6$ $u_n = 6 \cdot n + 4$ $u_n = 4 \cdot n - 2$ La suite $(u_n)$ définie pour tout entier n par $u_n = 3 \cdot 13^n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison 3ni arithmétique, ni géométrique géométrique de raison 13 géométrique de raison 3 Question 7 Soit $(u_n)$ une suite géométrique de raison 2 telle que $u_3 = 4$ ; alors $u_8$ est égal à : $u_8 = 2^5$ $u_8 = 4 \cdot 2^8$


 $u_8 = 4 \cdot 2^5$ 

 $u_8 = 2 \cdot 4^5$ 

| Question 8 Une suite $(u_n)$ vérifiant pour tout entier $n$ la relation de récurrence suivante : $u_{n+1} = 13 \cdot u_n + -900$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : |                                                                                                                         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| arithmétique de raison -9                                                                                                                                                                                                                                     | géométrique de raison -9                                                                                                |  |
| géométrique de raison 13                                                                                                                                                                                                                                      | ni arithmétique, ni géométrique                                                                                         |  |
| Question 9 Soit $(u_n)$ une suite géométrique de raison par la relation :                                                                                                                                                                                     | $\frac{1}{4}$ telle que $u_2 = 6$ ; alors $u_n$ s'exprime explicitement                                                 |  |
|                                                                                                                                                                                                                                                               | $  u_n = 4 \cdot \frac{1}{6^{n-2}} $                                                                                    |  |
| $    u_n = 6 \cdot \frac{1}{4^{n-2}} $                                                                                                                                                                                                                        | $    u_n = 4 \cdot \frac{1}{6^n} $                                                                                      |  |
| Question 10 Soit $(u_n)$ une suite géométrique de raise termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$                                                                                                                                      | on 3 telle que $u_0 = 8$ ; alors, la somme (notée $S_n$ ) des $u_{n-1} + u_n$ s'exprime explicitement par la relation : |  |
|                                                                                                                                                                                                                                                               |                                                                                                                         |  |
|                                                                                                                                                                                                                                                               | $S_n = 8\frac{1-3^{n+1}}{3-1}$                                                                                          |  |

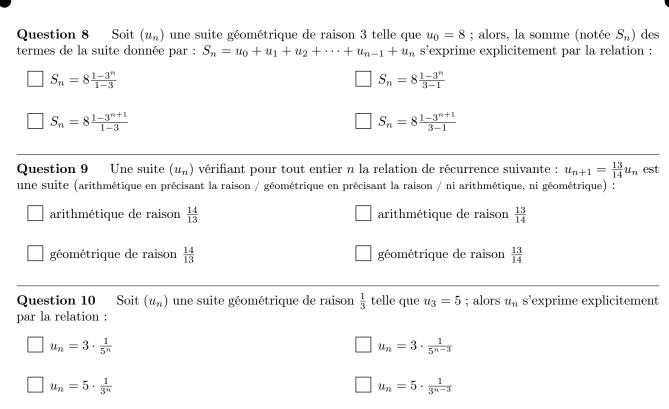
ROBINE Célia

| ni arithmétique, ni géométrique                                                                                            |                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| in arrameerque) in Seemeerrque                                                                                             | $\square$ géométrique de raison $\frac{6}{7}$                                                                                         |
| géométrique de raison 6                                                                                                    | arithmétique de raison 6                                                                                                              |
| Question 2 Une suite $(u_n)$ vérifiant pour tout entier est une suite (arithmétique en précisant la raison / géométrique   | $n$ la relation de récurrence suivante : $u_{n+1} = 14 \cdot u_n + 12$ de en précisant la raison / ni arithmétique, ni géométrique) : |
| arithmétique de raison 12                                                                                                  | ni arithmétique, ni géométrique                                                                                                       |
| géométrique de raison 14                                                                                                   | géométrique de raison 12                                                                                                              |
| Question 3 Une suite $(u_n)$ vérifiant pour tout entie une suite (arithmétique en précisant la raison / géométrique en     | r $n$ la relation de récurrence suivante : $u_{n+1} = \frac{9}{10}u_n$ est a précisant la raison / ni arithmétique, ni géométrique) : |
| $\square$ géométrique de raison $\frac{9}{10}$                                                                             | $\square$ arithmétique de raison $\frac{10}{9}$                                                                                       |
| $\square$ géométrique de raison $\frac{10}{9}$                                                                             | $\square$ arithmétique de raison $\frac{9}{10}$                                                                                       |
| Question 4 Soit $(u_n)$ une suite arithmétique de raise par la relation :                                                  | on 8 telle que $u_4 = 13$ ; alors $u_n$ s'exprime explicitement                                                                       |
| $    u_n = 8 \cdot n + 13 $                                                                                                | $  u_n = 8 \cdot n - 13 $                                                                                                             |
| $    u_n = 13 \cdot n + 8 $                                                                                                | $  u_n = 8 \cdot n - 19 $                                                                                                             |
| Question 5 Soit $(u_n)$ une suite géométrique de raistermes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$      | on 11 telle que $u_0 = 14$ ; alors, la somme (notée $S_n$ ) des $\cdot + u_{n-1} + u_n$ s'exprime explicitement par la relation :     |
|                                                                                                                            |                                                                                                                                       |
|                                                                                                                            |                                                                                                                                       |
| Question 6 La suite $(u_n)$ définie pour tout entier $r$ raison / géométrique en précisant la raison / ni arithmétique, ni | $n \text{ par } u_n = 5 \cdot 1^n \text{ est une suite (arithmétique en précisant la géométrique)}$ :                                 |
| arithmétique de raison 5                                                                                                   | géométrique de raison 5                                                                                                               |
| géométrique de raison 1                                                                                                    | ni arithmétique, ni géométrique                                                                                                       |
| Question 7 Soit $(u_n)$ une suite géométrique de rais                                                                      | on 11 telle que $u_2 = 14$ ; alors $u_8$ est égal à :                                                                                 |
|                                                                                                                            |                                                                                                                                       |
|                                                                                                                            | $u_8 = 11^6$                                                                                                                          |





#### RODRIGUES-CISSE Océane


| Question 1 Une suite $(u_n)$ vérifiant pour tout entier une suite (arithmétique en précisant la raison / géométrique en pr      | $n$ la relation de récurrence suivante : $u_{n+1} = \frac{13}{14}u_n$ est précisant la raison / ni arithmétique, ni géométrique) : |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| $\square$ géométrique de raison $\frac{13}{14}$                                                                                 | $\square$ arithmétique de raison $\frac{13}{14}$                                                                                   |
| $\square$ géométrique de raison $\frac{14}{13}$                                                                                 | $\square$ arithmétique de raison $\frac{14}{13}$                                                                                   |
| Question 2 Soit $(u_n)$ une suite arithmétique de raison par la relation :                                                      | n 7 telle que $u_4 = 11$ ; alors $u_n$ s'exprime explicitement                                                                     |
|                                                                                                                                 |                                                                                                                                    |
| $  u_n = 7 \cdot n + 11 $                                                                                                       |                                                                                                                                    |
| Question 3 Une suite $(u_n)$ vérifiant pour tout entier $r$ est une suite (arithmétique en précisant la raison / géométrique    | $u$ la relation de récurrence suivante : $u_{n+1} = 11 \cdot u_n + 5$ en précisant la raison / ni arithmétique, ni géométrique) :  |
| géométrique de raison 5                                                                                                         | $\hfill \square$ arithmétique de raison 5                                                                                          |
| ni arithmétique, ni géométrique                                                                                                 | géométrique de raison 11                                                                                                           |
| Question 4 La suite $(u_n)$ définie pour tout entier $n$ praison / géométrique en précisant la raison / ni arithmétique, ni gé  | par : $u_n = \frac{4^{n-4}}{5^n}$ est une suite (arithmétique en précisant la cométrique) :                                        |
| $\square$ géométrique de raison $\frac{4}{5}$                                                                                   | géométrique de raison 4                                                                                                            |
| arithmétique de raison 4                                                                                                        | ni arithmétique, ni géométrique                                                                                                    |
| Question 5 La suite $(u_n)$ définie pour tout entier $n$ p la raison / géométrique en précisant la raison / ni arithmétique, ni | par $u_n = 16 \cdot 20^n$ est une suite (arithmétique en précisant géométrique) :                                                  |
| géométrique de raison 16                                                                                                        | géométrique de raison 20                                                                                                           |
| ni arithmétique, ni géométrique                                                                                                 | arithmétique de raison 16                                                                                                          |
| Question 6 Soit $(u_n)$ une suite géométrique de raiso termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$         | n 5 telle que $u_0 = 9$ ; alors, la somme (notée $S_n$ ) des $+u_{n-1} + u_n$ s'exprime explicitement par la relation :            |
|                                                                                                                                 |                                                                                                                                    |
|                                                                                                                                 |                                                                                                                                    |
| Question 7 Soit $(u_n)$ une suite géométrique de raison                                                                         | a 6 telle que $u_2 = 10$ ; alors $u_{12}$ est égal à :                                                                             |
| $u_{12} = 10 \cdot 6^{10}$                                                                                                      | $u_{12} = 6 \cdot 10^{10}$                                                                                                         |
| $u_{12} = 6^{10}$                                                                                                               |                                                                                                                                    |

| Question 8 La suite $(u_n)$ définie pour tout entier $n$ par $u_n = 15 \cdot n + 8$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique):                                  |                                                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| ni arithmétique, ni géométrique                                                                                                                                                                                                                  | géométrique de raison 15                                                |  |
| arithmétique de raison 8                                                                                                                                                                                                                         | arithmétique de raison 15                                               |  |
| Question 9 Soit $(u_n)$ une suite géométrique de raison par la relation :                                                                                                                                                                        | $\frac{1}{3}$ telle que $u_5 = 7$ ; alors $u_n$ s'exprime explicitement |  |
| $    u_n = 7 \cdot \frac{1}{3^n} $                                                                                                                                                                                                               |                                                                         |  |
| $  u_n = 7 \cdot \frac{1}{3^{n-5}} $                                                                                                                                                                                                             | $  u_n = 3 \cdot \frac{1}{7^{n-5}} $                                    |  |
| Question 10 Soit $(u_n)$ une suite arithmétique de raison 7 telle que $u_0 = 10$ ; alors, la somme (notée $S_n$ ) des termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation : |                                                                         |  |
| $  S_n = (n+1)\frac{20+7\cdot n}{2} $                                                                                                                                                                                                            |                                                                         |  |
|                                                                                                                                                                                                                                                  | $  S_n = (n+1)\frac{10+7\cdot n}{2} $                                   |  |

+18/3/7+

SCAGLIA Tiffany

| <b>Question 1</b> Soit $(u_n)$ une suite arithmétique de raison termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$  | n 11 telle que $u_0 = 15$ ; alors, la somme (notée $S_n$ ) des $u_{n-1} + u_n$ s'exprime explicitement par la relation :        |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| $  S_n = (n+1)\frac{30+11\cdot n}{2} $                                                                                            |                                                                                                                                 |
|                                                                                                                                   |                                                                                                                                 |
| Question 2 La suite $(u_n)$ définie pour tout entier $n$ praison / géométrique en précisant la raison / ni arithmétique, ni gé    | par $u_n = 5 \cdot 2^n$ est une suite (arithmétique en précisant la ométrique) :                                                |
| $\square$ arithmétique de raison 5                                                                                                | géométrique de raison 2                                                                                                         |
| ni arithmétique, ni géométrique                                                                                                   | géométrique de raison 5                                                                                                         |
| Question 3 Soit $(u_n)$ une suite arithmétique de raison par la relation :                                                        | n 2 telle que $u_5=6$ ; alors $u_n$ s'exprime explicitement                                                                     |
| $    u_n = 6 \cdot n + 2 $                                                                                                        | $    u_n = 2 \cdot n - 6 $                                                                                                      |
|                                                                                                                                   |                                                                                                                                 |
| Question 4 Soit $(u_n)$ une suite géométrique de raison                                                                           | n 6 telle que $u_3 = 7$ ; alors $u_7$ est égal à :                                                                              |
|                                                                                                                                   |                                                                                                                                 |
|                                                                                                                                   |                                                                                                                                 |
| Question 5 La suite $(u_n)$ définie pour tout entier $n$ praison / géométrique en précisant la raison / ni arithmétique, ni gé    | par : $u_n = \frac{9^{n-1}}{10^n}$ est une suite (arithmétique en précisant la cométrique) :                                    |
| $\square$ géométrique de raison $\frac{9}{10}$                                                                                    | arithmétique de raison 9                                                                                                        |
| ni arithmétique, ni géométrique                                                                                                   | géométrique de raison 9                                                                                                         |
| Question 6 La suite $(u_n)$ définie pour tout entier $n$ par la raison / géométrique en précisant la raison / ni arithmétique, ni | ar $u_n = 11 \cdot n + 14$ est une suite (arithmétique en précisant géométrique) :                                              |
| arithmétique de raison 11                                                                                                         | ni arithmétique, ni géométrique                                                                                                 |
| arithmétique de raison 14                                                                                                         | géométrique de raison 11                                                                                                        |
| Question 7 Une suite $(u_n)$ vérifiant pour tout entier $n$ est une suite (arithmétique en précisant la raison / géométrique      | la relation de récurrence suivante : $u_{n+1} = 15 \cdot u_n + -18$ en précisant la raison / ni arithmétique, ni géométrique) : |
| géométrique de raison -18                                                                                                         | arithmétique de raison -18                                                                                                      |
| géométrique de raison 15                                                                                                          | ni arithmétique, ni géométrique                                                                                                 |



#### QCM 1 / Lundi 28 septembre – Tle THON Flavien Soit $(u_n)$ une suite arithmétique de raison 8 telle que $u_4 = 13$ ; alors $u_n$ s'exprime explicitement par la relation: $u_n = 13 \cdot n + 8$ $u_n = 8 \cdot n + 13$ $u_n = 8 \cdot n - 19$ La suite $(u_n)$ définie pour tout entier n par $u_n = 7 \cdot n + 20$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : géométrique de raison 7 arithmétique de raison 20 arithmétique de raison 7 ni arithmétique, ni géométrique Question 3 Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = 2 \cdot u_n + 2$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : ni arithmétique, ni géométrique arithmétique de raison 2 géométrique de raison 2 géométrique de raison 2 Soit $(u_n)$ une suite géométrique de raison $\frac{1}{3}$ telle que $u_3 = 5$ ; alors $u_n$ s'exprime explicitement Question 4 par la relation: $u_n = 5 \cdot \frac{1}{3^{n-3}}$ $u_n = 3 \cdot \frac{1}{5n}$ $u_n = 5 \cdot \frac{1}{2n}$ $u_n = 3 \cdot \frac{1}{5n-3}$ Soit $(u_n)$ une suite géométrique de raison 3 telle que $u_0 = 5$ ; alors, la somme (notée $S_n$ ) des termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n$ s'exprime explicitement par la relation : $S_n = 5 \frac{1-3^{n+1}}{1-3}$ $S_n = 5\frac{1-3^n}{3-1}$ $S_n = 5 \frac{1-3^{n+1}}{3-1}$ $S_n = 5\frac{1-3^n}{1-3}$ Question 6 La suite $(u_n)$ définie pour tout entier n par : $u_n = \frac{12^{n-1}}{13^n}$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison 12 géométrique de raison 12 ni arithmétique, ni géométrique géométrique de raison $\frac{12}{13}$ Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = \frac{7}{8}u_n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : arithmétique de raison $\frac{8}{7}$ géométrique de raison $\frac{7}{8}$

géométrique de raison  $\frac{8}{7}$ 

 $\perp$  arithmétique de raison  $\frac{7}{8}$ 

| Question 8 La suite $(u_n)$ définie pour tout entier $n$ par $u_n = 5 \cdot 1^n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) :                                  |                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| géométrique de raison 1                                                                                                                                                                                                                        | arithmétique de raison 5                |  |
| géométrique de raison 5                                                                                                                                                                                                                        | ni arithmétique, ni géométrique         |  |
| Question 9 Soit $(u_n)$ une suite arithmétique de raison 5 telle que $u_0 = 7$ ; alors, la somme (notée $S_n$ ) des termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation : |                                         |  |
| $  S_n = (n+1)\frac{14+5\cdot n}{2} $                                                                                                                                                                                                          |                                         |  |
| $  S_n = n \frac{7 + 5 \cdot n}{2} $                                                                                                                                                                                                           | $  S_n = (n+1)^{\frac{7+5\cdot n}{2}} $ |  |
| Question 10 Soit $(u_n)$ une suite géométrique de raison 12 telle que $u_4 = 14$ ; alors $u_9$ est égal à :                                                                                                                                    |                                         |  |
|                                                                                                                                                                                                                                                | $    u_9 = 14 \cdot 12^5 $              |  |
|                                                                                                                                                                                                                                                | $    u_9 = 14 \cdot 12^9 $              |  |

+20/3/1+

VERNET Emma

| Question 1 La suite $(u_n)$ définie pour tout entier $n$ précisant la raison / géométrique en précisant la raison / ni arithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $n$ par $u_n = -18 \cdot n + 16$ est une suite (arithmétique en nétique, ni géométrique) :                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| géométrique de raison -18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | arithmétique de raison -18                                                                                                        |
| ni arithmétique, ni géométrique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | arithmétique de raison 16                                                                                                         |
| Question 2 Soit $(u_n)$ une suite arithmétique de raison par la relation :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n 9 telle que $u_2 = 11$ ; alors $u_n$ s'exprime explicitement                                                                    |
| $  u_n = 9 \cdot n - 7 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $  u_n = 11 \cdot n + 9 $                                                                                                         |
| $    u_n = 9 \cdot n - 11 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $    u_n = 9 \cdot n + 11 $                                                                                                       |
| Question 3 Soit $(u_n)$ une suite géométrique de raiso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n 12 telle que $u_4 = 13$ ; alors $u_9$ est égal à :                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                   |
| <b>Question 4</b> Soit $(u_n)$ une suite géométrique de raise termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on 3 telle que $u_0 = 8$ ; alors, la somme (notée $S_n$ ) des $+u_{n-1} + u_n$ s'exprime explicitement par la relation :          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                   |
| $  S_n = 8 \frac{1-3^n}{3-1} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |
| Question 5 Soit $(u_n)$ une suite géométrique de raison par la relation :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n $\frac{1}{3}$ telle que $u_5=6$ ; alors $u_n$ s'exprime explicitement                                                           |
| $    u_n = 3 \cdot \frac{1}{6^{n-5}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $  u_n = 6 \cdot \frac{1}{3^{n-5}} $                                                                                              |
| $    u_n = 6 \cdot \frac{1}{3^n} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $    u_n = 3 \cdot \frac{1}{6^n} $                                                                                                |
| Question 6 Une suite $(u_n)$ vérifiant pour tout entier $n$ est une suite (arithmétique en précisant la raison / géométrique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $n$ la relation de récurrence suivante : $u_{n+1} = 5 \cdot u_n + -7$ en précisant la raison / ni arithmétique, ni géométrique) : |
| géométrique de raison -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | arithmétique de raison -7                                                                                                         |
| ni arithmétique, ni géométrique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | géométrique de raison 5                                                                                                           |
| Question 7 Une suite $(u_n)$ vérifiant pour tout entier une suite (arithmétique en précisant la raison / géométrique en precisant la raison / geométrique en p | $n$ la relation de récurrence suivante : $u_{n+1} = \frac{9}{10}u_n$ est précisant la raison / ni arithmétique, ni géométrique) : |
| $\Box$ géométrique de raison $\frac{9}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\square$ arithmétique de raison $\frac{9}{10}$                                                                                   |
| $\hfill \square$ arithmétique de raison $\frac{10}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\square$ géométrique de raison $\frac{10}{9}$                                                                                    |
| ·-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |

| Question 8 La suite $(u_n)$ définie pour tout entier $n$ par $u_n = -16 \cdot 4^n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) :                                |                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| ni arithmétique, ni géométrique                                                                                                                                                                                                                | géométrique de raison -16                |  |
| géométrique de raison 4                                                                                                                                                                                                                        | arithmétique de raison -16               |  |
| Question 9 Soit $(u_n)$ une suite arithmétique de raison 3 telle que $u_0 = 7$ ; alors, la somme (notée $S_n$ ) des termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation : |                                          |  |
|                                                                                                                                                                                                                                                | $  S_n = (n+1)^{\frac{14+3\cdot n}{2}} $ |  |
|                                                                                                                                                                                                                                                |                                          |  |
| Question 10 La suite $(u_n)$ définie pour tout entier $n$ par : $u_n = \frac{14^{n-5}}{15^n}$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) :                     |                                          |  |
| $\square$ géométrique de raison $\frac{14}{15}$                                                                                                                                                                                                | ni arithmétique, ni géométrique          |  |
| géométrique de raison 14                                                                                                                                                                                                                       | arithmétique de raison 14                |  |

+21/3/58+

#### VILLIARD Lorène

| Question 1 Une suite $(u_n)$ vérifiant pour tout ent une suite (arithmétique en précisant la raison / géométrique     | ier $n$ la relation de récurrence suivante : $u_{n+1} = \frac{17}{18}u_n$ est en précisant la raison / ni arithmétique, ni géométrique) : |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| $\Box$ géométrique de raison $\frac{17}{18}$                                                                          | $\square$ arithmétique de raison $\frac{18}{17}$                                                                                          |
| $\square$ arithmétique de raison $\frac{17}{18}$                                                                      | $\square$ géométrique de raison $\frac{18}{17}$                                                                                           |
|                                                                                                                       | aison 9 telle que $u_0 = 13$ ; alors, la somme (notée $S_n$ ) des $\cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation :      |
|                                                                                                                       | $  S_n = (n+1)\frac{26+9\cdot n}{2} $                                                                                                     |
| $  S_n = (n+1)\frac{13+9\cdot n}{2} $                                                                                 |                                                                                                                                           |
| Question 3 Une suite $(u_n)$ vérifiant pour tout entie est une suite (arithmétique en précisant la raison / géométri  | er $n$ la relation de récurrence suivante : $u_{n+1} = 13 \cdot u_n + -9$ que en précisant la raison / ni arithmétique, ni géométrique) : |
| arithmétique de raison -9                                                                                             | géométrique de raison 13                                                                                                                  |
| géométrique de raison -9                                                                                              | ni arithmétique, ni géométrique                                                                                                           |
| Question 4 La suite $(u_n)$ définie pour tout entier raison / géométrique en précisant la raison / ni arithmétique, n | $n \text{ par}$ : $u_n = \frac{2^{n-3}}{3^n}$ est une suite (arithmétique en précisant la ni géométrique) :                               |
| $\square$ géométrique de raison 2                                                                                     | $\square$ géométrique de raison $\frac{2}{3}$                                                                                             |
| arithmétique de raison 2                                                                                              | ni arithmétique, ni géométrique                                                                                                           |
| Question 5 La suite $(u_n)$ définie pour tout entier la raison / géométrique en précisant la raison / ni arithmétique | $n$ par $u_n = 7 \cdot n + 20$ est une suite (arithmétique en précisant e, ni géométrique) :                                              |
| arithmétique de raison 20                                                                                             | arithmétique de raison 7                                                                                                                  |
| géométrique de raison 7                                                                                               | ni arithmétique, ni géométrique                                                                                                           |
|                                                                                                                       | ison 11 telle que $u_0 = 14$ ; alors, la somme (notée $S_n$ ) des $\cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation :      |
|                                                                                                                       |                                                                                                                                           |
|                                                                                                                       |                                                                                                                                           |
| Question 7 Soit $(u_n)$ une suite géométrique de rapar la relation :                                                  | ison $\frac{1}{4}$ telle que $u_5 = 6$ ; alors $u_n$ s'exprime explicitement                                                              |
| $    u_n = 4 \cdot \frac{1}{6^{n-5}} $                                                                                |                                                                                                                                           |
|                                                                                                                       |                                                                                                                                           |
|                                                                                                                       |                                                                                                                                           |

| <b>Question 8</b> Soit $(u_n)$ une suite géométrique de raison                                                                                                                                                 | n 11 telle que $u_4 = 13$ ; alors $u_8$ est égal à : |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|
|                                                                                                                                                                                                                |                                                      |  |
|                                                                                                                                                                                                                |                                                      |  |
| Question 9 La suite $(u_n)$ définie pour tout entier $n$ par $u_n = 2 \cdot 14^n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : |                                                      |  |
| ni arithmétique, ni géométrique                                                                                                                                                                                | géométrique de raison 14                             |  |
| $\square$ géométrique de raison 2                                                                                                                                                                              | $\square$ arithmétique de raison 2                   |  |
| Question 10 Soit $(u_n)$ une suite arithmétique de raison 12 telle que $u_3 = 14$ ; alors $u_n$ s'exprime explicitement par la relation :                                                                      |                                                      |  |
|                                                                                                                                                                                                                | $  u_n = 12 \cdot n - 14 $                           |  |
|                                                                                                                                                                                                                |                                                      |  |



#### QCM 1 / Lundi 28 septembre – Tle essai23 La suite $(u_n)$ définie pour tout entier n par $u_n = -10 \cdot 5^n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : géométrique de raison -10 ni arithmétique, ni géométrique géométrique de raison 5 arithmétique de raison -10 Soit $(u_n)$ une suite arithmétique de raison 12 telle que $u_3 = 14$ ; alors $u_n$ s'exprime explicitement par la relation: $u_n = 12 \cdot n - 22$ $u_n = 12 \cdot n - 14$ $u_n = 12 \cdot n + 14$ $u_n = 14 \cdot n + 12$ La suite $(u_n)$ définie pour tout entier n par $u_n = -1 \cdot n + 16$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : géométrique de raison -1 arithmétique de raison -1 ni arithmétique, ni géométrique arithmétique de raison 16 Soit $(u_n)$ une suite géométrique de raison $\frac{1}{4}$ telle que $u_5 = 6$ ; alors $u_n$ s'exprime explicitement Question 4 par la relation: $u_n = 4 \cdot \frac{1}{6^n}$ $u_n = 4 \cdot \frac{1}{6^{n-5}}$ $u_n = 6 \cdot \frac{1}{4n-5}$ $u_n = 6 \cdot \frac{1}{4^n}$ Soit $(u_n)$ une suite arithmétique de raison 11 telle que $u_0 = 15$ ; alors, la somme (notée $S_n$ ) des termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation : $S_n = n \frac{30 + 11 \cdot n}{2}$ $S_n = (n+1)\frac{30+11\cdot n}{2}$ $S_n = (n+1)^{\frac{15+11\cdot n}{2}}$ Question 6 Soit $(u_n)$ une suite géométrique de raison 11 telle que $u_2=14$ ; alors $u_8$ est égal à : $u_8 = 11^6$ $u_8 = 11 \cdot 14^6$ $u_8 = 14 \cdot 11^6$ Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = \frac{6}{7}u_n$ est Question 7 une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique): géométrique de raison $\frac{6}{7}$ géométrique de raison $\frac{7}{6}$

 $\square$  arithmétique de raison  $\frac{7}{6}$ 

arithmétique de raison  $\frac{6}{7}$ 

| Question 8 Une suite $(u_n)$ vérifiant pour tout entier $n$ est une suite (arithmétique en précisant la raison / géométrique         | $n$ la relation de récurrence suivante : $u_{n+1}=12\cdot u_n+3$ en précisant la raison / ni arithmétique, ni géométrique) :  |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| géométrique de raison 3                                                                                                              | ni arithmétique, ni géométrique                                                                                               |
| géométrique de raison 12                                                                                                             | arithmétique de raison 3                                                                                                      |
| Question 9 La suite $(u_n)$ définie pour tout entier $n$ la raison / géométrique en précisant la raison / ni arithmétique, ni        | par : $u_n = \frac{15^{n-3}}{16^n}$ est une suite (arithmétique en précisant géométrique) :                                   |
| ni arithmétique, ni géométrique                                                                                                      | $\square$ géométrique de raison $\frac{15}{16}$                                                                               |
| arithmétique de raison 15                                                                                                            | géométrique de raison 15                                                                                                      |
| <b>Question 10</b> Soit $(u_n)$ une suite géométrique de rais des termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \cdots$ : | son 11 telle que $u_0 = 14$ ; alors, la somme (notée $S_n$ ) $\cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation |
|                                                                                                                                      |                                                                                                                               |
|                                                                                                                                      |                                                                                                                               |

#### QCM 1 / Lundi 28 septembre – Tle essai24 Soit $(u_n)$ une suite géométrique de raison 11 telle que $u_2 = 12$ ; alors $u_4$ est égal à : $u_4 = 11 \cdot 12^2$ $u_4 = 12 \cdot 11^4$ $u_4 = 11^2$ $u_4 = 12 \cdot 11^2$ Question 2 Soit $(u_n)$ une suite géométrique de raison $\frac{1}{7}$ telle que $u_5 = 10$ ; alors $u_n$ s'exprime explicitement par la relation: $u_n = 7 \cdot \frac{1}{10^{n-5}}$ $u_n = 7 \cdot \frac{1}{10^n}$ $u_n = 10 \cdot \frac{1}{7n-5}$ $u_n = 10 \cdot \frac{1}{7^n}$ Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = \frac{11}{12}u_n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique): arithmétique de raison $\frac{11}{12}$ géométrique de raison $\frac{12}{11}$ géométrique de raison $\frac{11}{12}$ arithmétique de raison $\frac{12}{11}$ Question 4 Soit $(u_n)$ une suite arithmétique de raison 4 telle que $u_2 = 6$ ; alors $u_n$ s'exprime explicitement par la relation: $u_n = 4 \cdot n + 6$ $u_n = 4 \cdot n - 6$ $u_n = 4 \cdot n - 2$ $u_n = 6 \cdot n + 4$ Soit $(u_n)$ une suite arithmétique de raison 11 telle que $u_0 = 14$ ; alors, la somme (notée $S_n$ ) des termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n$ s'exprime explicitement par la relation : $S_n = (n+1)\frac{28+11\cdot n}{2}$ $S_n = n \frac{14+11 \cdot n}{2}$ $S_n = (n+1)\frac{14+11 \cdot n}{2}$ Une suite $(u_n)$ vérifiant pour tout entier n la relation de récurrence suivante : $u_{n+1} = 2 \cdot u_n + 6$ Question 6 est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique): géométrique de raison 2 géométrique de raison 6 ni arithmétique, ni géométrique arithmétique de raison 6 La suite $(u_n)$ définie pour tout entier n par $u_n = -11 \cdot 2^n$ est une suite (arithmétique en précisant la raison / géométrique en précisant la raison / ni arithmétique, ni géométrique) : ni arithmétique, ni géométrique géométrique de raison -11

géométrique de raison 2

arithmétique de raison -11

| Question 8 La suite $(u_n)$ définie pour tout entier $n$ la raison / géométrique en précisant la raison / ni arithmétique, n                                                                                     | par $u_n = 15 \cdot n + 8$ est une suite (arithmétique en précisant ni géométrique) :                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| géométrique de raison 15                                                                                                                                                                                         | ni arithmétique, ni géométrique                                                                                                |
| arithmétique de raison 15                                                                                                                                                                                        | arithmétique de raison 8                                                                                                       |
| Question 9 La suite $(u_n)$ définie pour tout entier $n$ raison / géométrique en précisant la raison / ni arithmétique, ni $n$                                                                                   | par : $u_n = \frac{4^{n-4}}{5^n}$ est une suite (arithmétique en précisant la géométrique) :                                   |
| arithmétique de raison 4                                                                                                                                                                                         | $\square$ géométrique de raison $\frac{4}{5}$                                                                                  |
| ni arithmétique, ni géométrique                                                                                                                                                                                  | géométrique de raison 4                                                                                                        |
| <b>Question 10</b> Soit $(u_n)$ une suite géométrique de ra des termes de la suite donnée par : $S_n = u_0 + u_1 + u_2 + \dots + u_n + \dots + $ | ison 11 telle que $u_0 = 14$ ; alors, la somme (notée $S_n$ ) $\cdots + u_{n-1} + u_n$ s'exprime explicitement par la relation |
|                                                                                                                                                                                                                  |                                                                                                                                |
|                                                                                                                                                                                                                  |                                                                                                                                |
|                                                                                                                                                                                                                  |                                                                                                                                |

+24/3/49+