DS N°1-BIS DE PHYSIQUE-CHIMIE

Physique 1 : la sirène

/13,5

**

*

1- FAUX

la vitesse de propagation de l'onde est c=340m/s. On calcule la distance parcourue par l'onde pendant une durée égale à 3 fois la période T.

donc $d=v \times t$ avec v= c = 340m/s et t = 3T = $\frac{3}{f}$ = $\frac{3}{680}$ (car $T=\frac{1}{f}$) $d=340 \times \frac{3}{680} = \frac{340 \times 3}{2 \times 340}$ **d=1,5m** et on 40m

** *

2- VRAI

Calcul de la longueur d'onde $\lambda = c \times T = \frac{c}{f} = 340 \times \frac{1}{680} = \lambda = 0.5 \text{m}$ pour que les deux points vibrent en phase il faut que la distance qui les sépare soit un multiple de la longueur d'onde : $\frac{d'}{\lambda} = \frac{55}{0.5} = 110$ Les deux points vibrent donc en phase.

**

3- FAUX

6-

La distance séparant l'émetteur de l'obstacle est de 680m. L'onde parcourt un aller-retour soit $^{2\times680}$ m. La vitesse de l'onde est 340m/s elle parcourt donc 680m en 2s et donc la durée de l'aller retour est de 4s.

*

Le véhicule s'approche de l'observateur

4- relation liant vitesse, longueur d'onde et fréquence est $\lambda = \frac{c}{f}$

**

**

 $f'=f\frac{1}{1-\frac{V}{c}}$ on a V < c et v et c sont positifs => $0 < \frac{V}{c} < 1$ => $-1 < -\frac{V}{c} < 0$ $\frac{1}{1-\frac{V}{c}} > 1$ $=> 0 < 1-\frac{V}{c} < 1$ $=> \frac{1}{1-\frac{V}{c}} > 1$

** *

f étant positif => La fréquence perçue f' est plus grande que la fréquence émise f donc le son émis est plus aigu.

7- le phénomène observé ici est l'effet DOPPLER

**

Le véhicule s'éloigne de l'observateur

8- Le véhicule s'éloigne, on a donc $\lambda'' = \lambda + v \times T = > f'' = f \times \frac{c}{c+v}$

- **9-** Le son perçu est plus **grave** de manière similaire à la question 6, on a $\frac{c}{c+v} > 1$ donc et donc f''<f
- **10-** le véhicule se **rapproche**: $\frac{c}{f'} = \frac{c}{f} \frac{v}{f} = \frac{c}{f} \frac{c}{f'} = \frac{v}{f} = \frac{c}{f} \times \left(1 \frac{f}{f'}\right) = >$ $v=c \times \left(1 - \frac{f}{f'}\right)$ $v=340 \times \left(1 - \frac{680}{716}\right)$ v = 17,1 m/s = 61,5 km/h = 62 km/h

Physique 2 : Interférences et incertitudes

/8,5

**

**

- 1- L'interfrange est la distance séparant deux milieux de franges sombres (ou claires) consécutives.
- 2- En mesurant 10 interfranges on divise par 10 l'incertitude de mesure. La valeur ainsi obtenue pour une interfrange sera plus précise.
- 3- Seule la relation (B) convient : $i = \frac{\lambda \times D}{b}$ car chacun de ces paramètres est homogène à une longueur [i]=L ; [$^{\lambda}$]=L ; [D]=L et [b]=L soit $\overline{^{L}}$ =Remarque : [i] veut dire " dimension de i ". " L " est le symbole associé à la dimension.
- 4- La longueur d'onde est donnée par :

$$\lambda = \frac{b.i}{D} = \frac{0.500 \cdot 10^{-3} \cdot 1,36 \cdot 10^{-3}}{1,15} = 5,91 \cdot 10^{-7} \text{m} => \lambda = 591 \text{nm}.$$

5a- Calcul de U($^{\lambda}$):

$$U(\lambda) = \lambda \sqrt{\left(\frac{U(b)}{b}\right)^{2} + \left(\frac{U(i)}{i}\right)^{2} + \left(\frac{U(D)}{D}\right)^{2}} = U(\lambda) = 591 \sqrt{\frac{0,005}{0,500}^{2} + \left(\frac{0,01}{1,36}\right)^{2} + \left(\frac{1}{115}\right)^{2}} = > U(\lambda) = 9 \text{ nm}$$

- 5b- Encadrement : 591-9nm $\leq \lambda \leq$ 591+9nm soit 582 nm $\leq \lambda \leq$ 600 nm 5c- Cet encadrement contient la valeur du constructeur : 589,3 nm; Cet encadrement est donc compatible avec la valeur du constructeur.
- $i = \frac{\lambda \times D}{b}$ λ et b sont des constantes lors de cette 6- D'après la relation : expérience. Ainsi i et D sont proportionnels. Doubler D revient à doubler i.

Chimie 1 : Deux molécules organiques

/11

1- Deux molécules sont **isomères de constitution** si elles ont même formule brute, mais un enchaînement d'atomes différents.

* *

**

3- groupe caractéristique (en gras dans la formule topologique): carbonyle

**

**

4- Ces deux molécules appartiennent à la famille des aldéhydes

Spectre IR

5- La bande d'absorption fine et intense à 1700 cm⁻¹ correspond au groupe carbonyle.

**

**

6- A priori, il est difficile de différencier ces deux molécules grâce au spectre IR. En effet les molécules possèdent le même groupe caractéristique et la chaine carbonée ne présente que peu de différences.

Spectre RMN

7- formules semi-développées et spectre RMN:

C H ₃ O C H ₃-C H -C H ₂-C H	O C H ₃ -C H ₂ -C H ₂ -C H	* *
on a 4 groupes de protons équivalents : en rouge : 6 protons dont le signal est un doublet en noir : 1 proton : nonuplet (9) en vert : 2 protons : triplet en bleu : 1 proton : triplet	5 groupes de protons équivalents : en rouge : 3 protons : triplet en noir : 2 protons : sextuplet en vert : 2 protons : quintuplet en bleu : 2 protons : quadruplet en jaune : 1 proton : triplet	* *

8- Les deux spectres RMN sont différents, nombre de signaux différents et multiplicité de chaque signal différent. Il est donc facile de différencier les deux molécules par leur spectre RMN.

*

9- Pour différencier les molécules, il paraît nécessaire de s'appuyer sur plusieurs techniques. Ici la spectroscopie RMN paraît appropriée pour différencier les deux molécules.

*

La différenciation par spectroscopie IR paraît plus délicate au vu des similitudes des deux spectres.

Chimie 2 : La petite fabrique d'eau

$$_{1}$$
 $_{2}$ $_{1}$ $_{2}$ $_{2}$ $_{3}$ $_{2}$ $_{2}$ $_{3}$ $_{2}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{5}$ $_{4}$ $_{5}$ $_{4}$ $_{5}$ $_{5}$ $_{7}$

* *

2- volume de O_2 : Vm=24L/mol cela signifie qu'une mole de gaz occupe 24L.

$$V_m = \frac{V}{n}$$
 => $V(O_2) = n(O_2) \times V_m = 2.5 \times 10^{-2} \times 24$ $V(O_2) = 0.6$ L

* *

2- D'après la stoechiométrie de la réaction, il faut 2 fois plus de H2 que de O2.

Soit :
$$n(H_2)=2\times n(O_2)$$
 => $n(H_2)$ = 5.10⁻² mol

3- il est produit 2 fois plus de quantité de matière d'eau que de dioxygène introduit.

Soit :
$$n(H_2O) = {2 \times n(O_2)} = n(H_2O) = 5.10^{-2} \text{ mol}$$

*

4- La masse molaire de l'eau est M=18g/mol.

On obtient une masse $m=n\times M=5.10^{-2}*18=0.9$ g d'eau

* *

La masse volumique de l'eau est $\rho=1$ kg/L soit $\rho=1$ g/mL

On a donc un volume d'eau de $V = \frac{m}{\rho} = \frac{0.9}{1} = 0.9 \text{mL soit } 900 \mu\text{L}.$

5- Dans cette réaction chimique, les réactifs sont des gaz, les produits sont à l'état liquide. Au cours de la réaction, il y a diminution de la quantité de gaz donc une dépression est produit.

Remarque : cette réaction étant rapide, cette dépression rapide provoque une détonation aiguë.